This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

Chromatographic Behaviour of Phenols on Aliphatic Amines Impregnated Thin Layers

S. P. Srivastava^a; L. S. Chauhan^a ^a Department of Chemistry, University of Roorkee, Roorkee, India

To cite this Article Srivastava, S. P. and Chauhan, L. S.(1982) 'Chromatographic Behaviour of Phenols on Aliphatic Amines Impregnated Thin Layers', Journal of Liquid Chromatography & Related Technologies, 5: 6, 1081 — 1095 **To link to this Article: DOI:** 10.1080/01483918208067570 **URL:** http://dx.doi.org/10.1080/01483918208067570

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

CHROMATOGRAPHIC BEHAVIOUR OF PHENOLS ON ALIPHATIC AMINES IMPREGNATED THIN LAYERS

S.P. Srivastava, L.S. Chauhan and Reena Department of Chemistry University of Roorkee Roorkee-247672(India)

ABSTRACT

The chromatographic behaviour of 40 phenols on silica gel G plates impregnated with ethylenediamine, diethylenetriamine, triethylenetetramine and hexamine has been studied and its correlation with the equilibrium constants of the adducts formed by the interaction of phenols with ethylenediamine as an impregnant has been attempted. A suitable separation scheme for these phenols on silica gel G plates impregnated with ethylenediamine and hexamine has been worked out.

INTRODUCTION

The use of impregnants for improving TLC separation of phenols (1-3) has recently been made. The authors (4) have separated aliphatic amines on o-chlorophenol impregnated silica gel G layers and found that hydrogen bond formation between the o-chlorophenol and

Copyright © 1982 by Marcel Dekker, Inc.

aliphatic amines influences the chromatographic behaviour of aliphatic amines. Hence it was considered worthwhile to investigate the influence of aliphatic amine-impregnation on the chromatographic behaviour of phenols. The present paper deals with our studies on the chromatographic behaviour of phenols on silica gel G plates impregnated with different aliphatic amines along with our studies on the determination of equilibrium constant of adducts formed between phenols and ethylenediamine and their correlation with ΔhR_f and ΔR_W values.

EXPERIMENTAL

The TLC plates (thickness 0.5 mm) were prepared by means of a Stahl type applicator by spreading a slurry of 50 g silica gel G (B.D.H.) and varying amounts of impregnants in 100 ml of distilled water. The plates were dried for 24 hours at a constant temperature of $60 \pm 1^{\circ}$ C. Ethylenediamine, diethylene triamine and triethylenetetramine used as impregnants, were redistilled before use. Hexamine was used as such.

Various phenols were used after recrystallization or redistillation. The purified phenols samples were kept in dark bottles to prevent their photochemical oxidation. Different phenols were dissolved in acetone (0.2% W/V) and spotted on the activated chroma plates by the use of micro pipettes manufactured by Clay Admas(U.S.A.) The spots were allowed to air dry and then subjected to development. In each case, the plates were developed to a length of 12 cms.

Detection

All the phenols, except nitrophenols, which were self visualized as yellow spots, were detected as brown spots by a spray of (0.6% W/V) chromic acid solution.

RESULTS AND DISCUSSION

Tertiary amines and azo aromatic compounds act as good electron donors towards phenol in forming strong hydrogen bonds (5,6). Hence impregnation of silica gel G plates with different aliphatic amines was carried out to study the chromatographic behaviour of different phenols on these impregnated plates. Of the three aliphatic amines ethylenediamine, diethylenetriamine and triethylenetetra amine (each tried at four different concentrations) it was found that best separation was obstained on plates impregnated with($1^{\circ}/_{*}$ W/V)ethylenediamine. After trying a number of single, binary and ternary solvent systems, it was further found that the ternary solvent systems-cyclohexane-chloroformethyl acetate (30:15:10) and the cyclohexane-acetoneethyl acetate (40:6:5) were the most suitable developers for the phenols separated on ethylenediamine impregnated plates.

For working out a suitable separation scheme for the TLC separation of phenols, they were divided into four groups, each group having similar phenols. Group A consists of halophenols along with phenol, hydroxy biphenyls and salicyladehyde. Group B consisted of cresols, aminophenols, methoxy phenols along with salol and methyl salicylate. Group C consisted of xylenols, naphthols and o-, m- and p-nitro phenols. Group D consisted of dihyric, trihydric and di and tri-nitrophenols along with hydroxy carboxylic acid. The phenols of group D did not move or moved very little on ethylenediamine impregnated plates in the solvent systems employed. For these phenols, the best impregnant was found to be (2.0 %, W/V) of hexamine. For the sake of comparison, o-m-and p-nitrophenols have also been included in this group again and the separation scheme for phenols of group D has been given later .

(Table 1) gives the hR_f value of group A, group B and group C phenols on silica gel G^{*} plates impregnated with (1% W/V) of ethylenediamine. For the sake of compari-

	IA			
Solvent System C f (yclohexan orm-ethyl 30:15:10	ne-chloro Lacetate)	Cyclohexan ethylaceta (40 : 6 :	e-acetone te 5)
Adsorbent	A	в	A	В
Phenols				
Group A				
 Phenol 2-chlorophenol 4-chlorophenol 4-chloro-m-cres 2-Bromophenol 4-Bromphenol 2,4,6-bromophen 2-Hydroxybiphen 4-Hydroxybiphen Salicylaldehyde 	64 ^c 80 63 53 77 53 wol 8 yyl 63 yyl 57 96	58 61 55 49 45 40 72 52 19	64 ^c 80 _b 53 77 53 8 63 57 96	55 61 46 43 52 40 0 49 37 54
Group B				
1. o-cresol 2. m-cresol 3. p-cresol 4. 2-methoxyphenol 5. 4-methoxyphenol 6. Salol 7. Methyl salicyla 8. 2-Aminophenol 9. 3-Aminophenol 0. 4-Aminophenol	86 81 73 84 74 98 95 24c 11c 7	72 63 59 75 66 94 52 16 12 8	86 81 73 84 74 98 95 24 24 24 7	63 58 52 66 55 90 34 19 12 8
Group C 1. 2,3,Xylenol 2. 2,5-Xylenol 3. 2,6-Xylenol 4. 3,4-Xylenol 5. 3,5-Xylenol 6. α-Naphthol 7. β-Naphthol 8. 2-Nitrophenol 9. 3-Nitrophenol 0. 4-Nitrophenol	69 65 9 6 50 54 54 54 54 54 54 54 54 54 54 54 54 54	67 63 81 57 60 54 45 75 42 16	69 65 93 64 54 45 80 54 27	54 50 70 42 44 48 39 58 31 11

TABLE 1

Downloaded At: 18:04 24 January 2011

G

B= Silica gel G impregnated with 1 ml of ethylenedian in 100 ml water.

son and for evaluating △hR_f values, the hR_f values obtained on plain silica gel G plates have also been included.

An examination of the above data showed that on ethylenediamine impregnated plates, all phenols of group A, B and C got suitably separated and gave compact spots. However, tailing was observed in case of salicylaldehyde. Further, it may be noted that hR_f values on ethylenediamine impregnated plates are lower than on plain silica gel G plates for any phenol and the trend of hR_f values in the two cases is generally similar. Thus it may be reasonable to assume that similar type of interaction may be responsible for chromatographic behaviour observed in the two cases and the hydrogen bond formation between the H atom of the -OH group of the phenol and the N atom of the $-NH_2$ group of the amine should influence the movement on the chroma plate.

For verifying this possibility and to draw correlation, if any, between the chromatographic behaviour of phenols on ethylenediamine impregnated plates and the hydrogen bonding therein, the spectroscopic method of Baba and Suzuki (7) was applied to calculate the equilibrium constant for the hydrogen bond formation in each case. A typical spectra of the system p-cresol-ethylenediamine system is given in(Fig.2 a).

The values of A and A_f were read out at 34500 cm⁻¹ for p-cresol and p-methoxy phenol, at 35500 cm⁻¹ for phenol and at 35250 cm⁻¹ for 3,5-xylenol. These values of A and A_f and $\frac{1}{C}$ are recorded in (Table 2). The equilibrium constant were evaluated from a plot of $\frac{1}{A - A_f}$ vs $\frac{1}{C}$

Fig.2(a)_Relationship between ΔhR_f and K.

and these values of equilibrium constant K along with hR_f , R_m , ΔhR_f and ΔR_M are recorded in (Table 3). The plots of K vs ΔhR_f and of log K vs ΔR_M are given in (Fig.2 b). It is seen that hR_f for any particular phenol is lower on ethylenediamine impregnated plate than on plain silica gel and further ΔhR_f increases linearly with K and similarly ΔR_M is also linearly related to log K. Since silica gel is known to form Si - 0 - Si - bridge structure with - OH as the end group, it is reasonable to

Fig.2(b)_Relationship between ΔR_M and LogK .

assume that in case of phenols hydrogen bond formation between the H of the phenolic group and the O of the silica gel in the bridge structure predominantly influence the chromatographic behaviour of phenols on plain silica gel layers, while on ethylenedinmine impregnated layers, hydrogen bond formation between the H of the phenolic group and the O of silica gel as well as the N of the $-NH_2$ group governs the chromatographic behaviour. Thus, it can be concluded that amongst

S.No	». A	A _f	A-A _f	Cx 10 ³	1/C	$\frac{1}{A - A_{f}}$
Εt	thylened	liamine w	vith p-cre	sol (5.0 x)	10 ⁻⁴ M)	at 34500 cm ⁻¹
1. 2. 3. 4. 5.	0.48 0.55 0.66 0.70 10.76	0.30 0.30 0.30 0.30 0.30	0.18 0.25 0.36 0.40 0.46	2.8 4.2 7.0 8.4 14.0	357 238 142 119 71.	5.55 4.00 2.77 2.50 4 2.17
Et	thylened	liamine w	ith p-chl	orophenol(5	.0x10	⁺ M)at 34000cm
1. 2. 3. 4. 5.	0.54 0.67 0.72 0.77 0.87	0.22 0.22 0.22 0.22 0.22	0.32 0.43 0.50 0.55 0.59	2.8 4.2 7.0 8.4 14.0	357 238 142 119 71	3.12 2.22 2.00 1.81 4 1.69
Et	hy lene d	liamine w	ith p-bro	mophenol(5.0	0x10 ⁻⁴	M) at
34	+000 cm	·T				
1. 2. 3. 4.	0.52 0.61 0.67 0.71	0.34 0.34 0.34 0.34	0.18 0.27 0.33 0.37	1.56 2.8 4.2 5.6	641 357 238 178	5.55 3.70 3.03 2.70
Et	hylened	iamine w	ith p-met	hoxyphenol(5.0 x 10	⁻⁴ M) at
34	+500 cm	-1				
1. 2. 3. 4. 5.	0.39 0.55 0.58 0.65 0.72	0.24 0.24 0.24 0.24 0.24 0.24	0.15 0.31 0.34 0.41 0.48	1.4 3.7 4.2 5.6 7.0	714 270 238 178 142	6.66 3.22 2.94 2.43 2.08
E	Sthylene	diamine	with phen	ol (5.0 x 10) ™)	at
2	55500 cm	1				
1. 2. 3. 4.	0.45 0.52 0.60 0.76	0.18 0.18 0.18 0.18	0.27 0.34 0.42 0.58	2.8 4.2 7.0 14.0	357 238 142 71.	3.70 2.94 2.38 4, 1.72
E	Thylene	diamine	with 3,5-	xylenol (5.0) x 10'	- 4M) at
1. 2. 3.	0.58 0.58 0.70 0.76	0.40 0.40 0.40 0.40	0.18 0.22 0.30 0.36	2.2 2.8 4.2 5.6	454 357 238 178	5.55 4.54 3.33 2.77

TABLE 2

2011
January
24
18:04
At:
Downloaded

TABLE

M

Phenel	mlrdiling	constant	on plain Gel G	silica	Silica Junpreg with] ethyle mine j wat	a gel G gnated [/ in 100 cer	Dif	erence
	Kin l/mole	leg K	hR _f	Rm	ћR _f	بر	${}_{\rm L}^{\rm ph}$	œ [#]
p-chlere- phenel	250	2°39	89	-0.327	55	-0-087	13	-0-2401
p-Breneph	enøl 220	2.34	55	-0-087	9	0.176	Ц	-0.263
Phenol	0/T	2,23	67	-0.308	ß	-0.140	9	-0.168
p-methexy. phenel	- 125	2.09	73	-0.432	66	-0.288	2	-0-144
3,5-Xylen	1001	2,00	66	-0.288	8	-0.176	9	-0.112
p-cresol	8	1.95	64	-0.250	59	-0.158	ŝ	-0.092

the various forces responsible for TLC separation of phenols, hydrogen bond formation between N of the amine and H of the phenol plays a prominent role.

The extent of movement of spots i.e. hR, value depends upon the relative values of the strength of H-bonding, on solvation energy of eluting solvent and on steric effect of substituent(s). A higher value of hR_{ϕ} for O-Cresol than that of phenol may be attributed to the steric hindrance (0-effect) of the methyl group for the approach of the phenolic group to the surface and also because of the weakening of H-bond due to the electron donating nature of the methyl group. For the mono chloro- or mono bromo phenols, a lowering of hR, value may be due to the increase of the electron density at the O-atom of the -OH group due to the electron donating halogen atom. Here again, the hR, of the ortho isomer is higher for the same reason. On the other hand, a fairly higher hR, value for 0-nitro phenol in comparison to m- and p-nitro phenol should be due to the presence of intramolecular hydrogen bonding. The low hR, value for amino phenols is due to the fact both amine and phenolic groups can under hydrogen bonding with the adsorbents. The trend in hR_r values of xylenols shows that the effect of addition of one or more methyl groups is dependent on the position of the

2011
January
24
18:04
At:
ownloaded
Ã

TABLE

4

Э		
loxar		
ne–Di 120	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	er
ohexa 30	ы 1 1 1 1 1 1 1 1 1 1 1 1 1	f wat
Cycl	A 465 465 111 122 122 122 122 122 122 122 122 12	o Ter o
	D 231 232 232 232 232 232 232 232 232 232	in 10
ane-	thy ethics are the original c	mine
-Diox	н die die of die of	s hexa
hexane c Ació :10:5	t tai 2 210 2 210 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	th 2 f
Cyclo Aceti 35	Absorbent 1 nol acid acid acid acid acid acid acid acid	- mpregnated wi
System	Phenol (Group D) 2-Nitro phenol 3-Nitro phenol 4-Nitro phenol 4-Nitro phenol 2,4+6-Trinitro pheno 2,4+6-Trinitro pheno Phloroglucinol Phloroglucinol 2-Hydroxy benzolic 2-Hydroxy benzolic 2-Hydroxy benzolic 4-Hydroxy benzolic 2-Hydroxy benzolic 3-Hydroxy benzolic 3-Hydroxy benzolic 3-Hydroxy benzolic 2-Hydroxy benzolic 3-Hydroxy benzolic 3-Hydroxy benzolic 3-Hydroxy benzolic 2-Hydroxy benzolic 2-Hydrox	water D - Silica gel G 1

CHROMATOGRAPHIC BEHAVIOUR OF PHENOLS

substituent group or groups relative to phenolic group. The presence of two methylgroups 0- to phenolic groups in -2-6, xylenol raises the hR_f value because of steric hindrance.

Separation of group D phenols

As mentioned earlier for group D phenols, the solvent system found suitable for group A, B and Cphenols did not work on ethylenediamine impregnated plate. Hence, other solvent systems of higher eluting power were tried and it was found that with the solvent system, cyclohexane-dioxane-acetic acid (35:10:5) or cyclohexane-dioxane (30:20), the spots did move but many phenols of this group showed tailing and were not separated from each other (Table 4). Other impregnants were, therefore, tried and it was found that the best separation of phenols of group D was obtained when (2 %, W/V) aqueous solution of hexamine was used as impregnant with silica gel G and employing the solvent system cyclohexane-dioxane-acetic acid (35:10:5) or cyclohexane-dioxane (30:20). The results for the phenols of group D on hexamine-impregnated plates are shown in (Table 4). For comparison the hR, values on plain silica gel and on diethylenetriamine impregnated plates are also given.

REFERENCES

- Bark, L.S. and Graham, R.J.T., J. Chromatogr. <u>27</u>, 109, 1967.
- Bark, L.S. and Graham, R.J.T., J. chromatogr. <u>27</u>, 116, 1967.
- Bark, L.S. and Graham, R.J.T., J. chromatogr. <u>27</u>, 131, 1967.
- 4. Srivastava, S.P. and Chauhan, L.S., J. chromatogr. <u>196(2</u>), 225, 1980.
- Murthy, A.S.M. and Rao, C.M.R., Appl. Spectroso. Rev. <u>2</u>, 69, 1969.
- 6. Shah, S.B. and Murthy, A.S.M., Indian J. Chem. <u>13</u>, 664, 1975.
- 7. Baba, H. and Suzuki, S., J. Chem. phys. <u>35(3)</u>, 1118, 1961.